
Intensity fluctuations in closed and open systems

R. Pnini and B. Shapiro
Department of Physics, Technion–Israel Institute of Technology, 32000 Haifa, Israel

~Received 20 May 1996!

We consider the intensity pattern, generated by a monochromatic source, in a disordered cavity coupled to
the environment. For weak coupling, and when the source frequency is tuned to a resonance, the intensity
distributionP(I ) is close to Porter-Thomas distribution. When the coupling increases,P(I ) gradually crosses
over to the Rayleigh distribution. The joint probability distribution for intensities at two different points is also
discussed.@S1063-651X~96!51608-9#

PACS number~s!: 05.40.1j, 42.25.2p, 71.55.Jv

A wave propagating in a random medium produces a
complicated, highly irregular intensity pattern. This pattern is
described in statistical terms. One considers an ensemble of
different realizations of the random medium and inquires,
e.g., about the probability distributionP(I ) of the wave in-
tensity I at some pointr . In many casesP(I ) is accurately
described by the Rayleigh distribution

PR~ I !5
1

^I &
exp~2I /^I &!, ~1!

where^I & is the average intensity. A simple derivation of Eq.
~1! is based on an assumption that the field at pointr can be
viewed as a sum of many random contributions@1,2#. A
more systematic derivation, which paves the way for calcu-
lating corrections to the Rayleigh distribution@3,4#, is based
on the perturbative diagrammatic technique. Here one starts
with the wave equation

$“21k0
2@11m~r !#%cv~r !50, ~2!

supplemented by appropriate sources. In this equation
cv(r ) describes a field~for instance, pressure field in an
acoustic wave or a component of the electric field in an elec-
tromagnetic wave!, excited by a monochromatic source of
frequencyv. The random functionm(r ) describes the fluc-
tuating part of the refraction index andk05v/c, c being the
the speed of propagation in the average medium. In the dia-
grammatic approach one computes moments of the intensity
I[ucv(r )u2 and reconstructs the distributionP(I ).

Let us stress that Eq.~1! applies to the case of a mono-
chromatic wave propagating in an open system. A different
type of problem arises if one considers the wave equation~2!
in a closed geometry without sources. In this case one in-
quires about the statistical properties of a single eigenstate
ca(r ), e.g., about the distributionP(u) of the quantity
u[uca(r )u2. Extensive studies of chaotic@5# and disordered
@6# cavities have demonstrated that the main part of the dis-
tribution is described by the Porter-Thomas~PT! statistics

PPT~u!5S V

2puD
1/2

exp~2uV/2!, ~3!

whereV is the volume of the cavity and̂u&51/V.

The above discussion suggests the following idea. Let us
assume that the cavity is weakly coupled to the environment,
for instance, via a small opening or due to some small ab-
sorption in the bulk. Then, by placing a monochromatic
source inside the cavity and tuning its frequencyv to a reso-
nance, one will generate in the cavity an intensity pattern
I (r ) which closely follows the ‘‘profile’’ uca(r )u2 of the
eigenstatea with frequencyva.v. Thus, the intensity dis-
tribution will be given by the Porter-Thomas statistics. On
the other hand, for a sufficiently strong coupling~an open
system! the distribution should obey the Rayleigh statistics,
Eq. ~1!. The main purpose of this paper is to investigate the
crossover between weak and strong coupling and to propose
a generalized distributionP(I ) which interpolates between
the two regimes.

Let us first emphasize the difference between an open and
a closed system, using the simple picture of addition of many
random waves@1#. In an open system the local fieldc(r ,t)
can be viewed as a sum of great number oftravelingwaves,
arriving at a pointr from various scattering processes:

c~r ,t !5N21/2(
n51

N

cos~un1kn–r2vt !, ~4!

where the phasesun are completely random and all the am-
plitudes have been taken to be equal~one could assume ran-
dom independent amplitudes, without any change in the re-
sults!. The wave vectorskn are uniformly distributed on a
d-dimensional sphere (d52,3) of radiusk0 . The instanta-
neous local intensity is defined asc2(r ,t). The measured
quantity,I , is the intensity averaged over time, i.e., over one
periodT52p/v:

I5
1

TE0
T

dtc2~r ,t !

5
1

2N(
n,m

N

cos@un2um1~kn2km!–r #. ~5!

Note that the same expression forI is obtained if one as-
sumes a complex, time independent field
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c~r !5~2N!21/2(
n51

N

exp@ i ~un1kn•r !# ~6!

and defines the intensity asI (r )[uc(r )u2. It follows now
from the central limit theorem that both Rec and Imc are
independent Gaussian variables, with zero mean and equal
variances, which leads to Eq.~1! for the intensity distribu-
tion.

In a closed system the field is viewed as a sum of many
standingwaves:

c~r ,t !5N21/2(
n51

N

cos~un1kn•r !cosvt. ~7!

As far as the time-averaged intensity is concerned, one can
ignore the factor cosvt and define a stationary field

c~r !5~2N!21/2(
n51

N

cos~un1kn•r !. ~8!

The central limit theorem now tells us thatcv(r ) is a Gauss-
ian variable with zero mean, and the Porter-Thomas statistics

PPT~ I !5S 1

2p^I &I D
1/2

exp~2I /2^I &! ~9!

for the intensityI[cv
2 (r ) follows immediately.

After clarifying the difference between sums of random
traveling waves~open systems! and standing waves~closed
systems!, we move to the general case of a disordered cavity
coupled to the external world. We write the stationary field
as

c~r !5@2N~112e2!#21/2(
n51

N

$cos~un1kn•r !

1eexp@ i ~un81kn•r !#% ~10!

where the parametere describes the strength of the coupling.
For small e, and when the source frequency is tuned to a
resonance, the field consists of a large-amplitude standing
wave ~an eigenstate! with a small traveling wave ‘‘riding’’
on top of it. The intensity distributionP(I ) is close to the
expression in Eq.~9!. Large e corresponds to an open sys-
tem, where the field is mostly a traveling wave, andP(I ) is
close to the Rayleigh distribution, Eq.~1!.

All the phases,un andun8 in Eq. ~10! are independent and
uniformly distributed between 0 and 2p. It is then clear that
both Rec and Imc are independent Gaussian variables with
variances^(Rec)2&/^(Imc)2&5(11e2)/e2. This leads to
the following distribution for the intensity
I5(Rec)21(Imc)2:

P~ I !5
112e2

2^I &eA11e2
expF2

I

4^I &e2
~112e2!2

11e2 G
3I 0F I

4^I &e2
112e2

11e2 G ~11!

where I 0@x# is the modified Bessel function. Thenth mo-
ment of this distribution is then given by^I n&
5^I &nn! 2F1@2n/2,(12n)/2,1,(112e2)22#, where 2F1 is
the Gaussian hypergeometric function.

Since the parametere in Eq. ~10! is attached to the propa-
gating part of the field, it can be related to the~averaged over
time! current density@7#:

J~r !5
ic

2k0
@c~r !“c* ~r !2c.c#. ~12!

Substitutingc from Eq. ~10! and averaging over phases,
one finds that ^J(r )& vanishes @8# and ^J2(r )&
52c2^I &2e2(11e2)/(112e2)2. Therefore, instead of using
the somewhat vague notion of the ‘‘coupling strengthe ’’ for
parametrization of the distributionP(I ), one can use the di-
mensionless ratiod[^J2&/c2^I &2.

We, thus, propose a one-parameter distributionPd(I ) for
the intensity~we normalizeI to its average value, i.e. choose
^I &51):

Pd~ I !5
1

A2d
exp~2I /2d!I 0~ IA122d/2d!. ~13!

The parameterd can assume values from 0~closed system,
no current! to 1/2 ~open system, maximal current density!.
When this parameter changes from 0 to 1/2, the intensity
distribution changes from Porter-Thomas to Rayleigh.

Let us mention that a somewhat different crossover phe-
nomenon has been considered in Ref.@9#. These authors dis-
cussed the statistics ofuca(r )u2[u for an electron’s eigen-
state in a quantum dot, in the presence of an arbitrary
magnetic field. For zero field the distributionP(u) is given
by Eq. ~3!, whereas for a sufficiently strong field it crosses
over to a Rayleigh distributionP(u)5Vexp(2Vu). In this
crossover problem, as opposed to the one considered in the
present paper, the system always remains closed.

In a similar way one can consider the distribution for the
local current densityJ(r ) or the joint probability distribution
P(I ,J). We will not discuss here these objects but limit the
discussion to the joint probability distributionP(I 1 ,I 2),
whereI i[I (r i) ( i51,2). We start with a wave propagating
in an open system. The fieldc(r ) is then given by Eq.~6!. It
follows from that equation that, in the largeN limit, the joint
probability distribution forc(r1)[c1 andc(r2)[c2 is

W~c1 ,c2!5
1

p2detK
exp@2c i* ~K21! i jc j # ~14!

where Ki j5^c ic j* & is the 232 covariance matrix with
K115K2251, K125K21* 5 f (r), and r[ur12r2u. The ex-
plicit form of the field-field correlation functionf (r) will be
given below. Transforming to polar coordinates,
c i5AI iexp(ifi), and integrating out the phases, one obtains
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P~ I 1 ,I 2!5
1

12u f u2
expS 2

I 11I 2
12u f u2D I 0S 2u f uAI 1I 2

12u f u2 D .
~15!

Equation~14! is the standard assumption in the theory of
optical and acoustical speckles and the resulting distribution
P(I 1 ,I 2) is well known in optics and acoustics of disordered
media@1,2#. After averaging the productc(r1)c* (r2) over
the random phasesun , one findsf (r)5(nexp(ikn•r) where
the sum is taken overN points on a unit sphere. In the
N→` limit, replacing the sum by an integral, one finds
f (r)5J0(k0r) in two dimensions and f (r)
5(k0r)

21sin(k0r) in three dimensions.~A more rigorous
calculation@3# shows that, for an open geometry,f (r) de-
cays exponentially forr larger than the mean free pathl .)

Equations~14! and~15! describe the statistics of radiation
in an open system. In contrast, for a weakly coupled cavity
~under resonance condition! the main part of the field corre-
sponds to a standing wave. Such a field is represented by a
sum of real waves, Eq.~8!, and a derivation analogous to the
one outlined above gives

P~ I 1 ,I 2!5
1

2pA12 f 2
1

AI 1I 2

3expS 2
I 11I 2

2~12 f 2! D coshS fAI 1I 212 f 2 D . ~16!

The statistics of eigenstatesca(r ) in a closed system has
been rigorously studied by Prigodin and co-workers with the
help of a zero-dimensional supersymmetric nonlinears
model@10,11#. They studied the joint probability distribution
P(u1 ,u2), whereui[uca(r i)u2 ( i51,2). For the unitary case
@10# ~broken time-reversal symmetry!, an expression identi-
cal to Eq.~15! ~with I i replaced byui) was obtained. For the
orthogonal case, Prigodinet al. @11# ended up with a rather
complicated expression, containing a double integral. Later it
was shown by Srednicki@12# that the expression in Ref.@11#
can be reduced to the function given in Eq.~16!. He was
using the assumption@5# that a chaotic wave function,
ca(r ), obeys the statistics of a Gaussian random process.
This is in complete analogy with the standard assumption of
the speckle theory@1,2#, as outlined above. Again, the dif-
ference is that in the speckle theory one usually considers
propagating waves in an open geometry, whereas Refs.@10–
12# study a single eigenstate in an isolated system.

Now, we can analyze the general case of a disordered
cavity coupled with arbitrary strength to the external world.
The local field is now given by a combination of traveling
and standing waves, Eq.~10!. As a result, the real and imagi-
nary parts of the field at two points,r1 and r2, are compo-
nents of a four-dimensional Gaussian vector,
FT5(Rec1 ,Imc1 ,Rec2 ,Imc2), with the following covari-
ance matrix:

Ki j[^F iF j&5
1

112e2 F 11e2 0 ~11e2! f 0

0 e2 0 e2f

~11e2! f 0 11e2 0

0 e2f 0 e2
G .

(17)

After some lengthy algebra, this leads to

Pd~ I 1 ,I 2!5
exp@2~ I 11I 2!/2d#

2d~12 f 2! E
0

2pdu1du2
~2p!2

3expH A122d

2d~12 f 2! F I 1cos2u11I 2cos2u2

12 fAI 1I 2S cos~u12u2!2
cos~u11u2!

A122d
D G J .

~18!

Equation~18! interpolates between a weakly coupled cavity
~at the resonance! and an open system.

In conclusion, we consider statistics of radiation in a dis-
ordered cavity coupled to the environment. The coupling can
occur via an opening in the wall of the cavity or via absorp-
tion in the bulk. For weak coupling, and when the source
frequencyv is close to an eigenfrequencyva , the wave
generated in the cavity is close to a~standing! eigenmode
ca(r ), with only a small admixture of a traveling wave. The
intensity statistics is defined by the statistics of the eigen-
function ca(r ). For strong coupling the system becomes
open and we recover the old results of the speckle theory for
propagating waves. These results for the intensity distribu-
tion look very similar to the recently derived expressions for
the eigenfunction amplitude distribution in closed systems
with broken time-reversal symmetry. Thus, in optical sys-
tems considered in the present paper, coupling to the envi-
ronment breaks the time-reversal symmetry either via the
boundary conditions or by absorption in the bulk.

There are many similarities between intensity correlations
in open random systems and correlations in a single eigen-
state of a disordered cavity. There are also some differences.
In open systems, the correlations described by Eq.~15! are
valid for distancesr&l , wherel is the mean free path. For
distancesr@l a rather different type of correlation, due to
diffusion, takes over@13#.

Finally, let us mention that intensity distributions dis-
cussed above, such as in Eqs.~1!, ~9!, or ~13!, apply only to
the ‘‘bulk’’ of the distributions. Tails of the distributions,
corresponding to very large or very small values ofI , will
show significant deviations from the above-given expres-
sions and will not be universal. Indeed, it is well known that,
both in open and closed systems, distributions for various
quantities@conductance, density of states,uca(r )u2# develop
log-normal tails@14#. This must also be true for the intensity
distributionP(I ) discussed in this paper. For instance, for a
point source placed atr50, the field cv(r ) is just the
Green’s function Gv(0,r ) and the intensity is
I5uGv(0,r )u2. The Green’s function can be expanded in
terms of the eigenfunctionsca(r ), and the log-normal tail of
P(ucau2) is responsible for such tails in the intensity distri-
bution.
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